The following two papers jointly received CONCUR 2022 best paper award:

Wojciech Czerwiński, Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector Addition Systems is Decidable.

Abstract: We consider the problems of language inclusion and language equivalence for Vector Addition Systems with States (VASSes) with the acceptance condition defined by the set of accepting states (and more generally by some upward-closed conditions). In general the problem of language equivalence is undecidable even for one-dimensional VASSes, thus to get decidability we investigate restricted subclasses. On one hand we show that the problem of language inclusion of a VASS in k-ambiguous VASS (for any natural k) is decidable and even in Ackermann. On the other hand we prove that the language equivalence problem is Ackermann-hard already for deterministic VASSes. These two results imply Ackermann-completeness for language inclusion and equivalence in several possible restrictions. Some of our techniques can be also applied in much broader generality in infinite-state systems, namely for some subclass of well-structured transition systems.

Damien Pous, Jana Wagemaker. Completeness Theorems for Kleene Algebra with Top.

Abstract: We prove two completeness results for Kleene algebra with a top element, with respect to languages and binary relations. While the equational theories of those two classes of models coincide over the signature of Kleene algebra, this is no longer the case when we consider an additional constant 'top' for the full element. Indeed, the full relation satisfies more laws than the full language, and we show that those additional laws can all be derived from a single additional axiom. We recover that the two equational theories coincide if we slightly generalise the notion of relational model, allowing sub-algebras of relations where top is a greatest element but not necessarily the full relation. We use models of closed languages and reductions in order to prove our completeness results, which are relative to any axiomatisation of the algebra of regular events.